Ruthenium polypyridyl squalene derivative: a novel self-assembling lipophilic probe for cellular imaging.

نویسندگان

  • Franco Dosio
  • Barbara Stella
  • Annalisa Ferrero
  • Claudio Garino
  • Daniele Zonari
  • Silvia Arpicco
  • Luigi Cattel
  • Susanna Giordano
  • Roberto Gobetto
چکیده

Transition metal complexes provide a promising avenue for designing new therapeutic and diagnostic agents. In particular, ruthenium(II) polypyridyl complexes are useful for studying cellular uptake, due to their easy synthesis and unique photophysical properties. Dyes are frequently combined with material substrates to modulate their properties, enhance stability, reduce toxicity, and improve delivery. A novel Ru polypyridyl complex linked to a derivative of the natural lipid squalene (Ru-BIPPBI-hx-SQ) is described. Using the solvent displacement method, Ru-BIPPBI-hx-SQ easily self-assembles into nanosized aggregates in aqueous solution, as characterized by dynamic light scattering. The nanoassemblies exhibit long-lived and intense luminescence. Preliminary biological assessment showed them to be non-toxic; they are efficiently and rapidly transported across the cell membrane without requiring its permeabilization. Ru-labeled nanoassemblies are likely to be significant cellular-imaging tools, probing cellular events at very low concentrations. Moreover co-nanoassembly, with drug-derivatives based on squalenoylation technology, including gemcitabine and paclitaxel, has given interesting preliminary results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging.

Two novel polyarginine labelled ruthenium polypyridyl dyes are reported, one conjugated to five, (Ru-Ahx-R5), and one to eight arginine residues, (Ru-Ahx-R8); both complexes exhibit long-lived, intense, and oxygen-sensitive luminescence; (Ru-R8) is passively, efficiently and very rapidly transported across the cell membrane into the cytoplasm without requirement for its permeablisation.

متن کامل

Activatable Dendritic 19F Probes for Enzyme Detection

We describe a novel activatable probe for fluorine-19 NMR based on self-assembling amphiphilic dendrons. The dendron probe has been designed to be spectroscopically silent due to the formation of large aggregates. Upon exposure to the specific target enzyme, the aggregates disassemble to give rise to a sharp 19F NMR signal. The probe is capable of detecting enzyme concentrations in the low nano...

متن کامل

Tri- and tetra-nuclear polypyridyl ruthenium(II) complexes as antimicrobial agents.

A series of inert tri- and tetra-nuclear polypyridylruthenium(II) complexes that are linked by the bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane ligand ("bb(n)" for n = 10, 12 and 16) have been synthesised and their potential as antimicrobial agents examined. Due to the modular nature of the synthesis of the oligonuclear complexes, it was possible to make both linear and non-linear tetranuclear r...

متن کامل

Osmium(II) polypyridyl polyarginine conjugate as a probe for live cell imaging; a comparison of uptake, localization and cytotoxicity with its ruthenium(II) analogue.

A first investigation into the application of a luminescent osmium(ii) bipyridine complex to live cell imaging is presented. Osmium(ii) (bis-2,2-bipyridyl)-2(4-carboxylphenyl) imidazo[4,5f][1,10]phenanthroline was prepared and conjugated to octaarginine, a cell penetrating peptide. The photophysics, cell uptake and cytotoxicity of this osmium complex conjugate were performed and compared with i...

متن کامل

Ruthenium(II) polypyridyl complexes as carriers for DNA delivery.

Two novel water soluble ruthenium(II) complexes [Ru(bpy)(2)(bqbg)](2+) and [Ru(phen)(2)(bqbg)](2+) have been structurally characterized and their DNA condensation activity, cytotoxicity, and cellular uptake studies of DNA condensates as potential non-viral DNA carriers were evaluated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 440 2  شماره 

صفحات  -

تاریخ انتشار 2013